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Abstract
We consider two families of commuting Hamiltonians on the cotangent bundle
of the group GL(n, C), and show that upon an appropriate single symplectic
reduction they descend to the spectral invariants of the hyperbolic Sutherland
and of the rational Ruijsenaars–Schneider Lax matrices, respectively. The
duality symplectomorphism between these two integrable models that was
constructed by Ruijsenaars using direct methods can then be interpreted
geometrically simply as a gauge transformation connecting two cross sections
of the orbits of the reduction group.

PACS number: 02.30.Ik

1. Introduction

Around 20 years ago, Ruijsenaars [1] undertook a task of constructing action-angle variables
for the non-relativistic and relativistic Calogero models of type An (for reviews of these models
see, e.g., [2–5]). In each case, he made use of a commutation relation satisfied by the Lax
matrix of the model under study and another matrix function of the phase-space variables,
which he exhibited directly. By conjugating these matrices so as to make the Lax matrix
diagonal, he noted that the conjugate of the other matrix becomes the Lax matrix of another
Calogero-type model whose particle-position variables are furnished by the eigenvalues of the
original Lax matrix, i.e., the action variables of the original model. The so-obtained duality
between model 1 and model 2 is thus characterized by the fact that the action variables of model
1 are the particle-position variables of model 2, and vice versa. This observation was used in
[1] to derive integration algorithms for the commuting flows and to calculate the scattering
data. The simplest manifestation of the duality occurs in the rational Calogero model, which is
actually self-dual [1, 6]. The self-duality of this model admits a nice geometric ‘explanation’
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in terms of the symplectic reduction due to Kazhdan, Kostant and Sternberg [7, 2]. As it will
serve as a paradigm motivating our considerations, we next outline this explanation in some
detail.

In fact, Kazhdan, Kostant and Sternberg reduced the cotangent bundle,

T ∗u(n) � u(n) × u(n) = {(x, y)}, (1.1)

by means of the adjoint action of the group U(n), imposing the moment map constraint

[x, y] = iκ(1n − ww†) := μκ, (1.2)

where all n components of the column vector w are equal to 1, and κ is a real constant.
The evaluation functions X(x, y) := ix and Y (x, y) := iy can be viewed as ‘unreduced Lax
matrices’ since {tr(Xk)} and {tr(Y k)} form two Abelian subalgebras in the Poisson algebra
C∞(T ∗u(n)). These Abelian algebras survive the reduction, because their elements are U(n)

invariants. If one describes the reduced phase space in terms of a gauge slice where X is
diagonal, then—by solving the moment map constraint—Y becomes the Lax matrix of the
rational Calogero model whose action variables are the eigenvalues of Y. If one describes
the reduced phase space in terms of a gauge slice where Y is diagonal, then X becomes the
Lax matrix of the ‘dual Calogero model’. The correspondence between the variables of the
two Calogero models is obviously a symplectomorphism, as it represents the transformation
between two gauge slices realizing the same reduced phase space. The self-duality stems from
the symmetrical roles of x and y, and the commutation relation of the Lax matrices is just the
constraint (1.2) in disguise.

Ruijsenaars hinted in [1, 8, 9] that there might exist a similar geometric picture behind the
duality in other cases as well, which he left as a problem for ‘the aficionados of Lie theory’.
Later Gorsky and coworkers [10–12] (see also [13, 14]) introduced interesting new ideas
and confirmed this expectation in several cases. In particular, they derived the local version
of the so-called IIIb trigonometric Ruijsenaars–Schneider model [3, 9, 15], by reducing a
Hamiltonian system on the magnetic cotangent bundle of the loop group of U(n) [10]4.
The investigations in [10–14] focused on the local aspects and did not touch on the quite
tricky global definition of the pertinent gauge slices, which is necessary to obtain complete
commuting flows. We believe, however, that the reduction approach works also globally and
that it is possible to characterize the Ruijsenaars duality in a finite-dimensional symplectic
reduction picture in all cases studied in [1, 8, 9]. We plan to explore this issue systematically
in a series of papers, and here we report the first results of our analysis.

In this paper, we study a case of the duality which has not been previously described
in the symplectic reduction framework. Namely, we expound the geometric picture that
links together the dual pair consisting of the hyperbolic Sutherland model and the rational
Ruijsenaars–Schneider model [1]. In section 2, we start with two sets of ‘canonical integrable
systems’ on the cotangent bundle of the real Lie group GL(n, C), whose Hamiltonians span
two commutative families, {Hj } and {Ĥk}. By ‘canonical integrability’ we simply mean that
one can directly write down the Hamiltonian flows. Then, in section 3, we describe a symplectic
reduction of T ∗GL(n, C) for which our canonical integrable systems descend to the reduced
phase space. By using the shifting trick of symplectic reduction, we exhibit two distinguished
cross sections of the orbits of the gauge group that define two models of the reduced phase
space. In terms of cross section S1, the family {Hj } translates into the action variables
of the Sutherland model and the family {Ĥk} becomes equivalent to the Sutherland particle
coordinates. Cross section S1 is described by theorem 1, which summarizes well-known results

4 It is worth noting that besides the IIIb model there exist also other important, physically different real forms [3, 9]
of the complex trigonometric Ruijsenaars–Schneider model.
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[2]. In terms of cross section S2, the family {Hj } translates into the coordinate variables of the
rational Ruijsenaars–Schneider model and the family {Ĥk} gives the action variables of this
model. We call cross section S2 the ‘Ruijsenaars gauge slice’. Its characterization by theorem
2 is our principal technical result.

The duality symplectomorphism between the hyperbolic Sutherland and the rational
Ruijsenaars–Schneider model will be realized as the gauge transformation between the cross
sections S1 and S2 mentioned above. In addition, analogously to the case of the rational
Calogero model, the symplectic reduction immediately yields integration algorithms for the
commuting flows of the dual pair of models, and allows us to recognize the commutation
relations of the Lax matrices used by Ruijsenaars as equivalents to the moment map constraint
of the reduction. These consequences of theorem 1 and theorem 2 are developed in section 4.

The self-contained presentation of the relatively simple example of the Ruijsenaars duality
that follows may also facilitate the geometric understanding of this remarkable phenomenon
in more complicated cases.

2. Canonical integrable systems on T ∗GL(n, C)

Here we describe the two families of canonical integrable systems and their symmetries that
will be used to derive the dual pair of integrable many-body models by symplectic reduction.
For a general reference on symplectic reduction, we mention the textbook [16].

Consider the real Lie algebra G := gl(n, C) and equip it with the invariant bilinear form

〈X, Y 〉 := �tr(XY ) ∀X, Y ∈ G, (2.1)

which allows us to identify G with G∗ by the map j : G∗ → G as

〈j (α),X〉 = α(X) ∀α ∈ G∗, X ∈ G. (2.2)

Then use left trivialization to obtain a model of the cotangent bundle of the real Lie group
G := GL(n, C) as

T ∗G � G × G = {(g, JR) | g ∈ G, JR ∈ G}, (2.3)

where αg ∈ T ∗
g G is represented by

(
g, j ◦ L∗

g(αg)
) ∈ G × G with the left translation

Lg ∈ Diff(G). In terms of this model, the canonical symplectic form � of T ∗G takes
the form

� = d〈JR, g−1 dg〉. (2.4)

Next introduce the matrix functions L1 and L2 on T ∗G by the definitions

L1(g, JR) := JR and L2(g, JR) := gg†. (2.5)

We may think of these as ‘unreduced Lax matrices’ since they generate the Hamiltonians

Hj := 1

j
�tr

(
Lj

1

)
, j = 1, . . . , n, (2.6)

and

Ĥk := 1

2k
tr
(
Lk

2

)
, k = ±1, . . . ,±n, (2.7)

so that both {Hj } and {Ĥk} form commuting sets5 with respect to the Poisson bracket on the
phase space T ∗G.

5 We could have admitted also the imaginary part of the trace in (2.6) and the Hamiltonians in (2.7) are not functionally
independent, but these are the definitions that will prove convenient for us.
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It is easy to determine the flows of the Hamiltonians introduced above, through any initial
value (g(0), J R(0)). In fact, the flow belonging to Hj (2.6) is given by

g(t) = g(0) exp(t (J R(0))j−1), J R(t) = JR(0). (2.8)

The flow generated by Ĥk (2.7) reads as

JR(t) = JR(0) − t (g†(0)g(0))k, g(t) = g(0). (2.9)

We are going to reduce the phase space T ∗G by using the symmetry group

K := U(n)L × U(n)R, (2.10)

where the notation reflects the fact that the two U(n) factors operate by left and right
multiplications, respectively. This means that an element (ηL, ηR) ∈ K (with ηL,R ∈ U(n))
acts by the symplectomorphism �ηL,ηR

defined by

�ηL,ηR
(g, JR) := (

ηLgη−1
R , ηRJRη−1

R

)
. (2.11)

This action is generated by an equivariant moment map. To describe this map, let us note that
every X ∈ G can be uniquely decomposed (the Cartan decomposition) as

X = X+ + X− with X+ ∈ u(n), X− ∈ iu(n), (2.12)

i.e., into anti-Hermitian and Hermitian parts. Identify u(n) with u(n)∗ by the ‘scalar product’
〈. , .〉 restricted to u(n) ⊂ G. Then the moment map � : T ∗G → u(n)L ⊕ u(n)R reads

�(g, JR) = (
(gJRg−1)+,−JR

+

)
. (2.13)

The Hamiltonians Hj and Ĥk are invariant under the symmetry group K. Hence the
commutative character of the families {Hj } and {Ĥk} survives any symplectic reduction based
on this symmetry group. It is also clear that the flows of the reduced Hamiltonians will be
provided as projections of the above-given obvious flows to the reduced phase space. However,
in general it is a matter of ‘art and good luck’ to find a value of the moment map that leads
to interesting reduced systems. In the present case, it is well known [2] that by setting the
u(n)R-component of the moment map � to zero, and by setting the u(n)L-component equal
to the constant μκ defined in (1.2), one obtains the hyperbolic Sutherland model from the
Hamiltonian system (T ∗G,�,H2).

Our goal is to characterize the reduced Hamiltonian systems coming from (T ∗G,�,Hj )

and from (T ∗G,�, Ĥk). To describe the latter systems, it will be technically very convenient
to make use of the so-called shifting trick of symplectic reduction. This means that before
performing the reduction we extend the phase space by a coadjoint orbit. In the present case,
we consider the U(n) orbit through −μκ given by

OL
κ := {iκ(vv† − 1n)|v ∈ C

n, |v|2 = n}. (2.14)

The orbit carries its own (Kirillov–Kostant–Souriau) symplectic form, which we denote by
�O. The vector v matters only up to the phase and

(
OL

κ ,�O)
can be identified as a copy of

CPn−1 endowed with a multiple of the Kähler form defined by the Fubini–Study metric.

3. Symplectic reduction of the extended phase space

The extended phase space to consider now is

T ∗G × OL
κ = {(g, JR, ξ)} (3.1)

with the symplectic form

�ext = � + �O. (3.2)
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The symmetry group K acts by the symplectomorphisms �ext
ηL,ηR

given by

�ext
ηL,ηR

(g, JR, ξ) := (
ηLgη−1

R , ηRJRη−1
R , ηLξη−1

L

)
, (3.3)

and the corresponding moment map �ext is

�ext(g, JR, ξ) = (
(gJRg−1)+ + ξ,−JR

+

)
. (3.4)

We are going to reduce at the zero value of the extended moment map, i.e., we wish to describe
the reduced phase space

T ∗G × OL
κ //0K. (3.5)

In our case, this space of K-orbits is a smooth manifold, as will be seen from its models. It is
equipped with the reduced symplectic form, �red, which is characterized by the equality

π∗�red = ι∗�ext. (3.6)

Here π is the submersion from (�ext)−1(0) to the space of orbits in (3.5), and ι is the injection
from (�ext)−1(0) into T ∗G × OL

κ . Before turning to the details, a few remarks are in order.
First, note that one can reduce in steps, initially implementing only the reduction by the

factor U(n)R of K (2.10). This leads to the equality

T ∗G × OL
κ //0K = [

T ∗(G/U(n)R) × OL
κ

]
//0U(n)L, (3.7)

where G/U(n)R can be viewed as the symmetric space of positive definite Hermitian matrices.
It is for computational convenience that we start from the larger phase space T ∗GL(n, C).

Second, the advantage of the shifting trick is that convenient models of the reduced phase
space may become available as cross sections of the K-orbits in (�ext)−1(0), which are more
difficult to realize without using the auxiliary orbital degrees of freedom. But in principle, one
can always do without the shifting trick: in our case we have T ∗G×OL

κ //0K ≡ T ∗G//(μκ ,0)K ,
with the reduced phase space defined by (Marsden–Weinstein) point reduction on the right-
hand side of the equality.

Third, if we define

ξ(v) := iκ(vv† − 1n) ∀ v ∈ C
n with |v|2 = n, (3.8)

then we have

ηξ(v)η−1 = ξ(ηv) ∀ η ∈ U(n). (3.9)

This means that the obvious action of U(n) on C
n underlies the coadjoint action on the orbit

OL
κ , and we shall use this to transform the C

n-vectors v that correspond to the elements ξ(v).
Fourth, we define the extended Hamiltonians H ext

j and Ĥ ext
k by

H ext
j (g, JR, ξ) := Hj(g, JR), Ĥ ext

k (g, JR, ξ) := Ĥk(g, JR). (3.10)

The flows on T ∗G×OL
κ are obtained from the flows of the unextended Hamiltonians on T ∗G

simply by adding the relation ξ(t) = ξ(0). We may also define the matrix functions Lext
1 and

Lext
2 on T ∗G × OL

κ by

Lext
1 (g, JR, ξ) = JR and Lext

2 (g, JR, ξ) = gg†, (3.11)

whereby we can write

H ext
j = 1

j
�tr

((
Lext

1

)j )
and Ĥ ext

k = 1

2k
tr
((
Lext

2

)k)
. (3.12)

Now we turn to the description of two alternative models of the reduced phase space that
will be shown to carry a dual pair of integrable many-body models. As a preparation, we
associate with any vector q ∈ R

n the diagonal matrix

q := diag(q1, . . . , qn). (3.13)

5
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We let C denote the open domain (Weyl chamber)

C := {q ∈ R
n | q1 > q2 > · · · > qn}, (3.14)

and equip

T ∗C � C × R
n (3.15)

with the Darboux form

�T ∗C(q, p) :=
∑

k

dpk ∧ dqk. (3.16)

3.1. The Sutherland gauge slice S1

Let us define the iu(n)-valued matrix function L1 on T ∗C (cf (3.15)) by the formula

L1(q, p)jk := pjδjk − i(1 − δjk)
κ

sinh(qj − qk)
. (3.17)

This is just the standard Lax matrix of the hyperbolic Sutherland model [2, 17, 18]. The
following result is well known [2, 7], but for readability we nevertheless present it together
with a proof.

Theorem 1. The manifold S1 defined by

S1 := {(eq, L1(q, p),−μκ)|(q, p) ∈ C × R
n} (3.18)

is a global cross section of the K-orbits in the submanifold (�ext)−1(0) of T ∗G × OL
κ . If

ι1 : S1 → T ∗G ×OL
κ is the obvious injection, then in terms of the coordinates q, p on S1 one

has

ι∗1(�
ext) =

∑
k

dpk ∧ dqk. (3.19)

Therefore, the symplectic manifold (S1,
∑

k dpk ∧ dqk) � (T ∗C,�T ∗C) is a model of the
reduced phase space defined by (3.5).

Proof. Our task is to bring every element of (�ext)−1(0) to a unique normal form by the ‘gauge
transformations’ provided by the group K. For this purpose, let us introduce the submanifold
P of GL(n, C) given by the positive definite Hermitian matrices. Recall that the exponential
map from iu(n) to P is a diffeomorphism. By the polar (Cartan) decomposition, every
g ∈ GL(n, C) can be uniquely written as

g = g−g+ with g− ∈ P, g+ ∈ U(n). (3.20)

It is readily seen that g can be transformed by the K-action into an element for which

g+ = 1n and g− = eq with q ∈ R
n, q1 � q2 � · · · � qn. (3.21)

The moment map constraint requires JR
+ = 0 and, by (3.4), for triples of the form (eq, J R

− , ξ(v))

we are left with the condition

(eqJR
− e−q)+ + ξ(v) = 0. (3.22)

This implies that the diagonal entries of the Hermitian matrix JR
− are arbitrary and the diagonal

entries of the anti-Hermitian matrix ξ(v) vanish. By (3.8), it follows from ξ(v)jj = 0 that

vj = eiθj , ∀ j, (3.23)

with some phase factors θj . The off-diagonal components of the constraint (3.22) are

(JR
− )jk sinh(qj − qk) + iκvj v̄k = 0, ∀ j �= k. (3.24)

6
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Since vj v̄k �= 0, we see from (3.21) and (3.24) that q must belong to the open Weyl chamber C
(3.14). Then the residual gauge transformations permitted by the partial gauge fixing condition
(3.21) are given precisely by the maximal torus of Tn ⊂ U(n), diagonally embedded into
K = U(n)L × U(n)R . They operate according to

(eq, J R
− , v) �→ (eq, τJR

− τ−1, τv) ∀ τ ∈ Tn. (3.25)

Hence we can completely fix the residual gauge freedom by transforming the vector v into
the representative w, whose components are all equal to 1. At the same time, by (3.24), JR

−
becomes equal to L1(q, p), where p is the arbitrary diagonal part of JR

− . The calculation of
ι∗1(�

ext) as well as the rest of the statements of the theorem is now obvious. �

Remark 1. If we spell out the moment map constraint (3.22) for the solution JR
− = L1, v = w

and also multiply this equation both from the left and from the right by eq, then we obtain

[e2q, L1(q, p)] + 2iκ((eqw)(eqw)† − e2q) = 0. (3.26)

This is the commutation relation for the Lax matrix (3.17) used in [1].

3.2. The Ruijsenaars gauge slice S2

In this subsection, we denote the elements of T ∗C = C × R
n as pairs (p̂, q̂). We introduce the

P-valued matrix function L2 on T ∗C by the formula

L2(p̂, q̂)jk = uj (p̂, q̂)

[
2iκ

2iκ + (p̂j − p̂k)

]
uk(p̂, q̂), (3.27)

with the R+-valued functions

uj (p̂, q̂) := e−q̂j

∏
m�=j

[
1 +

4κ2

(p̂j − p̂m)2

] 1
4

. (3.28)

One can calculate the principal minors of L2 with the help of the Cauchy determinant formula,
and thereby confirm that L2 is indeed a positive definite matrix. Therefore, it admits a unique
positive definite square root, and we use it to define the R

n-valued function,

v(p̂, q̂) := L2(p̂, q̂)−
1
2 u(p̂, q̂), (3.29)

where u = (u1, . . . , un)
T . It can be verified directly, and can be seen also from the proof

below, that |v(p̂, q̂)|2 = n. Thus, by using (3.8), we have the OL
κ -valued function

ξ(p̂, q̂) := ξ(v(p̂, q̂)). (3.30)

The function L2 (3.27) is nothing but the standard Lax matrix of the rational Ruijsenaars–
Schneider model [19], with variables denoted by somewhat unusual letters. Using the above
notations, we now state the main technical result of the present paper.

Theorem 2. The manifold S2 defined by

S2 := {
(L2(p̂, q̂)

1
2 , p̂, ξ(p̂, q̂))|(p̂, q̂) ∈ C × R

n
}

(3.31)

is a global cross section of the K-orbits in the submanifold (�ext)−1(0) of T ∗G × OL
κ . If

ι2 : S2 → T ∗G ×OL
κ is the obvious injection, then in terms of the coordinates p̂, q̂ on S2 one

has

ι∗2(�
ext) =

∑
k

dq̂k ∧ dp̂k. (3.32)

Therefore, the symplectic manifold (S2,
∑

k dq̂k ∧ dp̂k) � (T ∗C,�T ∗C) is a model of the
reduced phase space defined by (3.5).

7
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Proof. Let us begin by noting that by means of the K-action we can transform each element
of (�ext)−1(0) into an element (g, JR, ξ(v)) that satisfies

g = g− ∈ P and JR = p̂ with p̂ ∈ R
n, p̂1 � p̂2 � · · · � p̂n.

(3.33)

After this partial gauge fixing the moment map constraint becomes

g−1
− p̂g− − g−p̂g−1

− = 2ξ(v). (3.34)

In order to solve this equation, we multiply it both from the left and from the right by g−,
which gives

[p̂, g2
−] = 2iκ(uu† − g2

−), (3.35)

where we have combined the unknowns g− and v to define

u := g−v. (3.36)

This equation then permits us to express g2
− in terms of p̂ and u as

(g2
−)jk = uj

[
2iκ

2iκ + (p̂j − p̂k)

]
ūk. (3.37)

By calculating the determinant from the last relation, we obtain

det(g2
−) =

(∏
m

|um|2
) ∏

j<k

(p̂j − p̂k)2

(p̂j − p̂k)2 + 4κ2
. (3.38)

Since det(g2
−) �= 0, we must have

p̂1 > p̂2 > · · · > p̂n and uj �= 0 ∀ j. (3.39)

In particular, p̂ must belong to the open Weyl chamber C. This implies that the residual gauge
transformations permitted by our partial gauge fixing are generated by the maximal torus Tn

of U(n), diagonally embedded into K, which act according to

(g−, p̂, v) �→ (τg−τ−1, p̂, τv) ∀ τ ∈ Tn. (3.40)

By applying these gauge transformations to u in (3.36) we have

τ : u �→ τu. (3.41)

It follows that we obtain a complete gauge fixing by imposing the conditions

uj > 0 ∀ j. (3.42)

For fixed p̂, the positive vector u remains arbitrary, and thus it can be uniquely parametrized
by introducing a new variable q̂ ∈ R

n via equation (3.28).
The outcome of the above discussion is that the manifold S2 given by (3.31) is a global

cross section of the K-orbits in (�ext)−1(0), which provides a model of the reduced phase
space (3.5). Indeed, formula (3.37) of g2

− becomes identical to formula (3.27) of L2 if we take
into account the gauge fixing conditions (3.42) and the parametrization (3.28). At the same
time, the inversion of relation (3.36) yields v(p̂, q̂) in (3.29).

It remains to show that the variables (p̂, q̂) that parametrize S2 are Darboux coordinates
on the reduced phase space. Direct substitution into the symplectic form �ext (3.2) is now
cumbersome, since we do not have L2(p̂, q̂)

1
2 explicitly. We circumvent this problem by

proceeding as follows. We define the smooth functions Fa and Ea on T ∗G × OL
κ by

Fa(g, JR, ξ) := 1

a
tr[(JR

− )a] and Ea(g, JR, ξ) := 1

a
tr[(gg†)a], a = 1, . . . , n.

(3.43)
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We also define the functions Fa and Ea on the gauge slice S2 by

Fa(p̂, q̂) := 1

a
tr[p̂a] and Ea(p̂, q̂) := 1

a
tr[L2(p̂, q̂)a], a = 1, . . . , n. (3.44)

It is clear that Fa and Ea are K-invariant functions, and by means of the injection map
ι2 : S2 → T ∗G × OL

κ we have

ι∗2F
a = Fa, ι∗2E

a = Ea ∀ a = 1, . . . , n. (3.45)

Therefore, we can determine the induced Poisson brackets of these functions by two methods.
First, denote the Poisson bracket on the extended phase space by {., .}ext. The Poisson bracket
of K-invariant functions is again K-invariant and a straightforward calculation gives (for any
1 � a, b � n)

ι∗2{Ea,Eb}ext = ι∗2{Fa, F b}ext = 0, ι∗2{Ea, F b}ext = 2tr
[
(p̂)b−1La

2

]
. (3.46)

Second, denote by {., .}red the Poisson bracket on C∞(S2) induced by the reduced symplectic
structure. We wish to show that

{p̂j , p̂k}red = {q̂j , q̂k}red = 0 and {p̂j , q̂k}red = δ
j

k . (3.47)

Now, if we assume that the last relation holds, then it can be verified by direct calculation6

(for any 1 � a, b � n) that

{Ea, Eb}red = {Fa,Fb}red = 0, {Ea,Fb}red = 2tr
[
(p̂)b−1La

2

]
. (3.48)

From general principles, the restriction of the Poisson bracket of K-invariant functions to a
gauge slice always yields the induced Poisson bracket of the restricted functions. By taking
into account (3.45), we conclude from the comparison of equations (3.46) and (3.48) that
the Poisson bracket on C∞(S2) that arises from the symplectic reduction coincides with the
Poisson bracket given in coordinates by (3.47), at least if we restrict our attention to the
collection of the functions Fa, Ea . Thus it remains to prove that the functions Fa, Ea can
serve as local coordinates around any point from a dense open submanifold of S2. Indeed,
the symplectic form on this dense submanifold could then be written as

∑
k dq̂k ∧ dp̂k . The

smoothness of the symplectic form would then allow us to conclude the same on the whole
of S2.

The map from C × R
n to C × (R+)

n given by (p̂, q̂) �→ (p̂, u(p̂, q̂)) is clearly a
diffeomorphism, and thus we can use p̂k, uk (k = 1, . . . , n) as coordinates on S2. When
expressed in these new coordinates, we denote our functions of interest as F̃a, Ẽa and L̃2:

F̃a(p̂, u) = Fa(p̂, q̂), Ẽa(p̂, u) = Ea(p̂, q̂), L̃2(p̂, u) = L2(p̂, q̂) (3.49)

if u = u(p̂, q̂). To finish the proof, it is sufficient to show that the Jacobian determinant
of the map C × (R+)

n → R
n × R

n given in coordinates by p̂k, uk �→ F̃a(p̂, u), Ẽa(p̂, u) is
non-vanishing on a dense open subset of C × (R+)

n. For this, note from (3.27) and (3.44) that
F̃a and Ẽa are rational functions of the variables p̂k, uk , and thus the Jacobian,

det
∂(F̃a, Ẽb)

∂(p̂j , uk)
, (3.50)

is also a rational function of the same variables (that is, the quotient of two polynomials in
the 2n-variables p̂k, uk). This implies that the Jacobian (3.50) either vanishes identically or is
non-vanishing on a dense open subset of C × (R+)

n � S2.

6 Only the relation {Ea, Eb}red = 0 requires non-trivial effort, but this was established in [19] as well as in the more
recent papers dealing with the dynamical r-matrix structure of the Ruijsenaars–Schneider models [20].
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Now we show that the Jacobian (3.50) does not vanish identically. First of all, from the
fact that F̃a does not depend on uk , we see easily that

det
∂(F̃a, Ẽb)

∂(p̂j , uk)
= det

[
∂F̃a

∂p̂j

]
det

[
∂ Ẽb

∂uk

]
. (3.51)

The first determinant on the rhs is the Vandermonde one:

det

[
∂F̃a

∂p̂j

]
=

∏
i<m

(p̂m − p̂i), (3.52)

which never vanishes on S2 due to (3.39). The second determinant on the rhs of (3.51)
parametrically depends on p̂. In particular, if we take a real parameter s > 0 and consider the
curve p̂(s) defined by p̂j (s) := e(n+1−j)s for j = 1, . . . , n, then we observe that in the limit
s → ∞ the matrix L̃2 (3.49) becomes diagonal:

lim
s→∞ L̃2(p̂(s), u) = diag

(
u2

1, . . . , u
2
n

)
. (3.53)

Hence, in the limit s → ∞, we encounter again a Vandermonde determinant:

lim
s→∞ det

[
∂ Ẽb

∂uk

]
(p̂(s), u) = 2n

⎛
⎝∏

j

uj

⎞
⎠ ∏

i<m

(
u2

m − u2
i

)
. (3.54)

Obviously, we can choose u in such a way that the rhs of equation (3.54) does not vanish.
Then the Jacobian determinant (3.50) does not vanish at (p̂(s), u) for large enough s. �

Remark 2. The consequence (3.35) of the moment map constraint yields the commutation
relation satisfied by the Lax matrix L2 (3.27) and u(p̂, q̂) (3.28):

[L2(p̂, q̂), p̂] + 2iκ(u(p̂, q̂)u(p̂, q̂)† − L2(p̂, q̂)) = 0, (3.55)

which played a crucial role in the analysis in [1].

4. The dual pair of many-body models

We now enumerate important consequences of the results presented in the preceding sections.

(i) Since S1 (3.18) and S2 (3.31) are two models of the same reduced phase space (3.5), there
exists a natural symplectomorphism between these two models:(

S1,
∑

k

dpk ∧ dqk

)
≡ (

T ∗G × OL
κ //0K,�red

) ≡
(

S2,
∑

k

dq̂k ∧ dp̂k

)
. (4.1)

By definition, a point of S1 is related to that point of S2 which represents the same element
of the reduced phase space.

(ii) The pullbacks of the ‘unreduced Lax matrices’ (3.11) to S1 and S2 satisfy, respectively,

ι∗1Lext
1 = L1 and ι∗2Lext

2 = L2. (4.2)

By the symplectic reduction, the K-invariant Hamiltonians (3.12) descend to the families
of Hamiltonians defined on (S1,

∑
k dpk ∧dqk) and on (S2,

∑
k dq̂k ∧dp̂k), respectively,

by

H red
j = 1

j
tr
(
L

j

1

)
, (j = 1, . . . , n) and

Ĥ red
k = 1

2k
tr
(
Lk

2

)
, (k = ±1, . . . ,±n). (4.3)

10
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The commutativity of
{
H red

j

}
and

{
Ĥ red

k

}
(where the elements with fixed sign of k form

a complete set) is inherited from the commutativity of the unreduced Hamiltonians in
(3.12). (Note that tr

(
L

j

1

) = �tr
(
L

j

1

)
since L1 (3.17) is a Hermitian matrix.)

(iii) According to classical results, L1 (3.17) is the Lax matrix of the hyperbolic Sutherland
model, and L2 (3.27) is the Lax matrix of the rational Ruijsenaars–Schneider model. The
basic Hamiltonians of these many-body models are indeed reproduced as

Hhyp−Suth(q, p) ≡ 1

2

∑
k

p2
k +

κ2

2

∑
j �=k

1

sinh2(qj − qk)
= 1

2
tr(L1(q, p)2), (4.4)

Hrat−RS(p̂, q̂) ≡
∑

k

cosh(q̂k)
∏
j �=k

[
1 +

4κ2

(p̂k − p̂j )2

] 1
2

= 1

2
tr(L2(p̂, q̂) + L2(p̂, q̂)−1).

(4.5)

The Lax matrices themselves arose naturally (4.2) by means of the symplectic reduction.
(iv) Consider two points of S1 and S2 that are related by the symplectomorphism (4.1). Suppose

that these two points are parametrized by (q, p) ∈ C×R
n and by (p̂, q̂) ∈ C×R

n according
to (3.18) and (3.31), respectively. The fact that they lie on the same K-orbit means, since
g+ in g = g−g+ (3.20) is fixed to 1n in both gauges, that there exists some η ∈ U(n)

(actually unique up to the center of U(n) that acts trivially) for which(
ηeqη−1, ηL1(q, p)η−1,−ημκη

−1) = (L2(p̂, q̂)
1
2 , p̂, ξ(p̂, q̂)). (4.6)

This shows that the matrix p̂, which encodes the coordinate variables of the rational
Ruijsenaars–Schneider model, results by diagonalizing the Sutherland Lax matrix
L1(q, p). The same formula shows that e2q, which encodes the coordinate variables
of the hyperbolic Sutherland model, results by diagonalizing the Ruijsenaars–Schneider
Lax matrix L2(p̂, q̂). The original, direct construction [1] of the map between the phase
spaces of the two many-body models relied on diagonalization of the Lax matrices, but
in that approach it was quite difficult to prove the canonicity of the map, which comes for
free in the symplectic reduction framework.

(v) It is obvious from the above observations that the two many-body models characterized
by the Hamiltonians (4.4) and (4.5) are dual to each other in the sense described in
the Introduction. On the one hand, the Ruijsenaars–Schneider particle coordinates
p̂1, . . . , p̂n regarded as functions on S1 define action variables for the hyperbolic
Sutherland model. On the other, the Sutherland particle coordinates q1, . . . , qn regarded
as functions on S2 can serve as action variables for the rational Ruijsenaars–Schneider
model.

(vi) The well-known solution algorithms [2, 19] for the commuting Hamiltonians exhibited
in (4.3) can be viewed as byproducts of the geometric approach. First of all, it should be
noted that all the flows generated by the reduced Hamiltonians are complete, since this
is true for the unreduced Hamiltonians whose flows stay in (�ext)−1(0). By taking an
initial value on the gauge slice S1 and projecting the flow (2.8) back to S1 we obtain that
the reduced Hamiltonian H red

j (4.3) generates the following evolution for the Sutherland
coordinate-variables:

e2q(t) = D
[
eq(0) exp

(
2tL1(0)j−1

)
eq(0)

]
, (4.7)

where the zero argument refers to the t = 0 initial value, and D denotes the operator that
brings its Hermitian matrix argument to diagonal form with eigenvalues in non-increasing
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order. Similarly, we obtain from (2.9) that the reduced Hamiltonian Ĥ red
k (4.3) generates

the following flow for the Ruijsenaars–Schneider coordinate variables:

p̂(t) = D
[
p̂(0) − tL2(0)k

]
. (4.8)

We here used that (g†(0)g(0))k = L2(0)k for any initial value on S2.

To summarize, we presented the duality between the hyperbolic Sutherland model (4.4)
and the rational Ruijsenaars–Schneider model (4.5) in the framework of symplectic reduction.
In this way, we obtained a Lie theoretic understanding of results due to Ruijsenaars [1], who
originally discovered and investigated the duality by direct means. Our approach also simplifies
a considerable portion of the original technical arguments. The general line of reasoning that
we followed may be adapted to explore more complicated cases of the duality in the future,
too. For example, it will be demonstrated in [21, 22] that the reduction approach works in
a conceptually very similar manner for the dualities concerning trigonometric Ruijsenaars–
Schneider models.

Finally, let us mention that the dual pairs of models studied by Ruijsenaars at the classical
level [1, 8, 9] are associated at the quantum-mechanical level with so-called bispectral problems
[23], as was first conjectured in [3] and later confirmed in several papers. Concerning
the bispectral property, and in particular the bispectral interpretation of the duality between
the hyperbolic Sutherland and the rational Ruijsenaars–Schneider models, the reader may
consult [24, 25] and references therein. We expect that this intriguing phenomenon could be
understood also in terms of a quantum Hamiltonian reduction counterpart of our approach.
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[12] Fock V, Gorsky A, Nekrasov N and Rubtsov V 2000 Duality in integrable systems and gauge theories J. High
Energy Phys. JHEP07(2000)028

[13] Arutyunov G E and Frolov S A 1998 On Hamiltonian structure of the spin Ruijsenaars–Schneider model J.
Phys. A: Math. Gen. 31 4203–16

[14] Fock V V and Rosly A A 1999 Poisson structure on moduli of flat connections on Riemann surfaces and the
r-matrix Moscow Seminar in Mathematical Physics ed A Yu Morozov and M A Olshanetsky (Providence,
RI: American Mathematical Society) pp 67–86

[15] van Diejen J F and Vinet L 1998 The quantum dynamics of the compactified trigonometric Ruijsenaars–
Schneider model Commun. Math. Phys. 197 33–74

[16] Libermann P and Marle C-M 1986 Symplectic Geometry and Analytical Mechanics (Dordrecht: Reidel)
[17] Moser J 1975 Three integrable Hamiltonian systems connected with isospectral deformations Adv. Math.

16 197–220
[18] Calogero F, Ragnisco O and Marchioro C 1975 Exact solution of the classical and quantal one-dimensional

many-body problems with the two-body potential Va(x) = g2a2/ sinh2(ax) Lett. Nuovo Cimento 13 383–7
[19] Ruijsenaars S N M and Schneider H 1986 A new class of integrable models and their relation to solitons Ann.

Phys., NY 170 370–405
[20] Avan J 2000 Classical dynamical r-matrices for Calogero–Moser systems and their genealizations Calogero–

Moser–Sutherland Models ed J F van Diejen and L Vinet (Berlin: Springer) pp 1–21 and references
therein
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